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1 Introduction

Global optimization, that is the search for a global
extremum, is a problem frequently encountered.
Sometimes it is extremely costly to evaluate a func-
tion for an engineering design. For example, Davis
(1996) wrote about experiences at Boeing:

“Designing helicopter blades to achieve
low vibration is an extreme example of
a problem where it is prohibitively ex-
pensive to compute responses for large
numbers of design alternatives.”

For such applications one is interested in mini-
mizing the total number of function evaluations
needed to find the global extremum.

Global optimization methods that are based on
statistical models of the objective function have
been very successful here for two reasons: (1) they
base the decision where to sample further points on
all previous function evaluations, rather than just
on the last few, and (2) they select points based on
average case scenarios rather than on worst case
behaviour.

Worst case analysis corresponds to the mini-
max paradigm which postulates that the maximal
loss is to be minimized, for example rules based
on Lipschitz bounds. The sampling decision under
uncertainty can be viewed as a two player game
against nature. Whereas a worst case analysis may
be realistic when playing against an intelligent op-
ponent, average case analysis is more appropriate
here since nature is impartial with respect to the
outcome. This line of argument dates back to Wald
(1949).

The method proposed in this paper deals with
the unconstrained global optimization problem,
minimize f(x) where x = (21,...,z). This in-
cludes the class of problems with simple constraints

like a; < z; < b;, since these problems can be
transformed to unconstrained global optimization
problems. Throughout we assume without loss of
generality that the extremum of interest is a min-
imum.

The outline of this paper is as follows. In Sec-
tion 2 we briefly review the Bayesian global opti-
mization approach and introduce a more flexible
stochastic model in that framework. Section 3 ex-
plains how to assess and improve the model fit and
hence the effectiveness of the global optimization
method. The assessment is based on graphical di-
agnostics. Section 4 shows by means of several ex-
amples from the optimization literature that this
approach is very efficient in terms of the number of
function evaluations required. Section 5 concludes
with some discussion.

2 Expected Improvement Al-
gorithm

The algorithm is based on the idea that any future
sampled point constitutes a potential improvement
over the minimal sampled value up to the present
stage. Therefore we will refer to the algorithm
throughout as the ezpected improvement algorithm.
As we will show later, the expected improvement
criterion is equivalent to one-step-ahead optimality
in Bayesian Global Optimization.

The expected improvement algorithm proceeds
in five steps:

1. Choose a small initial set of design points
spread over the entire z space. Evaluate the
true function at these points.

2. Model the true function using all previous
function evaluations.

3. Find the maximum of the “expected
improvement”-criterion. The location of the
maximum is a new design point.

4. Evaluate the true function at the new design
point.



5. Compute a stopping criterion. If the stop-
ping criterion is not met go to Step 2.

Note that after each sampling Step the predictor is
updated (Step 2), and the expected improvement
is recalculated (Step 3).

For Step 1 Latin hypercube sampling schemes
(McKay et al., 1979) are particularly useful, be-
cause they have space filling property, i.e. they
cover the z domain to explore the function glob-
ally. The number of points sampled at this initial
stage is somewhat arbitrary. We choose about 10
points per active variable because, in our experi-
ence, one needs at least that many points to obtain
a reasonably good fit.

For the modelling approach in Step 2 we use
a stochastic process with a more flexible correla-
tion structure than previously employed. This is
further discussed in Section 2.1.

The “expected improvement”-criterion in Step
3 is based on the idea that any additional function
evaluation constitutes a potential reduction of the
minimal function evaluation found so far. This is
further discussed in Section 2.2.

Step 4 consists of evaluating the next design
point. For Step 5, we propose to stop when the
maximum of the expected improvement is smaller
than a tolerance value; smaller in absolute value or
relative to the current minimal function value.

2.1 Modelling Approach

Suppose after an initial experimental design or at
some stage of the algorithm, we have n vectors
X1,...,X, at which the function f has been eval-
uated. Each vector x is k-dimensional for the &
covariates (or inputs) z1,...,z,. The correspond-
ing response values (or outputs) are denoted y =
(Y1,---,yn)t. Then, following the approach of,
e.g., Welch et al. (1992), the response is treated
as a random function or a realization of a stochas-
tic process:
Y(x) =0+ Z(x),
where E(Z(x)) = 0 and Cov(Z(w), Z(x)) =
o?R(w, x) for two inputs w and x. The correlation
function R(-,-) can be tuned to the data. Here it
is assumed to have the form:
E
Riw,x) = [[ exp(~6;lw; — ;%) (1)
j=1

where 6; > 0 and 0 < p; < 2. The p;’s can
be interpreted as parameters which indicate the

smoothness of the response surface (smoother as
the p’s increase) and the 6’s indicate how local the
predictor is (more local as the 8’s increase).

The best linear unbiased predictor of y at an
untried x can be shown to be:

i(x) =+ (x)R "y - 18), (2)

where r(x) is the vector of the correlations between
x and each of the n design points, x1,...,x, from
(1), B = (1'R~!1)~!1'y is the generalized least
squares estimator of 3, R is a correlation matrix
with element (4, j) defined by R(x;,x;) in (1) and
1 is a vector of 1’s.

The MSE of the estimate can be derived as:

MSE[j(x)] =

02[1—<1 ) (9 };)_1(;)]@)

The predictor in (2) has proven to be accurate
for numerous applications, see e.g. Currin et al.
(1991), Sacks et al. (1989a), Sacks et al. (1989b),
Welch et al. (1992).

2.2 Criterion

We will now derive the expected improvement cri-
terion.

If the function is sampled at x to determine
y = f(x) then the improvement I over f7. . the
minimal sampled function value after n evalua-
tions, is defined as

otherwise

The expected improvement is given as

Frin
B = [ i - by )
-0

where ¢() is the probability density function rep-
resenting uncertainty about y.

Mockus (1989) proposes an equivalent criterion
by specifying a loss function on the sequential n-
step optimization strategy S, :

The risk, or the average loss is then given as

B (L(Sn; f)) = E(min f(2)) — E(frmin)
(5)



An optimal strategy is defined as one that mini-
mizes the risk (5). Computing an optimal strategy
turns out to be computationally infeasible for even
a moderate number of points n. The standard ap-
proach then is to relax the n-step optimality to
one-step optimality. The criterion for one-step op-
timality is equivalent to (4).

To predict Y (x) at an untried x, we have §(x)
with a mean squared error given by (3). For no-
tational simplicity, we omit the dependence on x,
and denote §(x) by ¥ and the root mean squared
error by s. Next, we take the distribution of the
unknown Y = Y (x) as N(9, s?). If we further as-
sume that the random function Y (z) is Gaussian,
then ¢ is also normal. Thus, we represent uncer-
tainty about the true y by saying it is N (g, s). The
expected improvement in (4) can be expressed as

E(I) =
{ Fnin = W@(F227E) 4 5 (Laiz=h)
0

v
— oo

QP

6)

where ¢() and ®() denote the probability density
function and the cumulative density function of the
standard normal distribution.

The expected improvement will tend to be large
at a point whose predicted value is very small or
where there is a lot of uncertainty associated with
the prediction.

A practical problem, though, is finding the glo-
bal maximum of the expected improvement crite-
rion over a continuous region. We start a large
number of local searches from random starting
points. This does not guarantee to find the global
maximum, of course. Mockus (1994) states in this
context “[...] there is no need for exact minimiza-
tion of the risk function”, because we only deter-
mine the point of the next observation.

3 Diagnostics

The success of the Bayesian minimization algo-
rithm depends on having a valid model. The better
the model the more likely the algorithm will ter-
minate quickly and with an accurate tolerance on
the minimum. For this reason one would like to
assess the performance of the modeling approach
as soon as possible, that is after the initial function
evaluations. When the model does not fit well it is

often possible to improve the fit through appropri-
ate transformations of the response. For this pur-
pose we propose three diagnostic plots to be used
after the initial function evaluations have been ob-
tained. All of them are based on the concept of
cross validation.

Cross validation is a statistical technique often
used for assessing a model’s predictive capability,
when it is not convenient to test the model at un-
known design points. It consists of setting aside
and predicting a small portion of the data from
a model based on the remaining larger portion of
data. Most commonly only one point at a time is
set aside, and cross validation is performed once for
each point to be left out. In this paper we always
use leave-one-out cross validation.

We remove case i from (2) and (3) to obtain
§-i(x:) and s_; (x;). The notation emphasizes that
case 1 is removed when predicting at x;. Cross-
validated standardized errors (residuals), for ex-
ample, can be written as

Yi — @—i(xi)‘ (7)

€; =
: S_,'(Xi)

We propose the following three diagnostic plots:

1. A plot of the cross validation predictions ver-
sus the true y’s, i.e. §_;(x;) versus y;.

2. A plot of the cross validated standardized er-
rors versus the cross validated predictions,
ie. e in (7) versus §_;(x;).

3. A plot of the cross validated expected im-
provements versus the true y, i.e. E(I) eval-
uated at x; based on §_;(x;) and s_;(x;) ver-
sus ;.

The first plot indicates prediction accuracy. The
second assesses where prediction error or uncer-
tainty is realistic. In particular the standardized
errors should not lie far outside about [—2,2] or
[—3, 3] if many points are plotted if the normal ap-
proximation in (6) is valid. The third plot assesses
the expected improvement criterion. If the crite-
rion works well, the lowest 4’s should be associated
with the highest expected improvements. If the
expected improvement criterion is not able to dis-
tinguish between high and low %’s in the function
evaluations to date, then the expected improve-
ment algorithm will likely not work well in select-
ing new points.



If the plots indicate a poor fit a transformation
of the data can often improve the fit. This is possi-
ble because the transformed data may more closely
resemble a realization of a Gaussian stochastic pro-
cess.

4 Example

The Goldstein-Price function (Térn and Zilinskas,
1989) has two independent variables:

f(xla 1:2) —
[1+ (21 + 22 + 1)%(19 — 14zq + 327 — 14z,
+6z122 + 323)] x [30 + (221 — 3z,)?

(18 — 3221 + 1227 + 4825 — 36z 122 + 2723)] .
(8)

The variables z; and zo are both defined on the
interval [—2,2]. The Goldstein-Price function has
one global minimum that is equal to 3 at (0, —1).
Not far from the global minimum, there are three
local minima. The function values range over sev-
eral orders of magnitudes.

Initially, we sample the function at 21 points
generated by a Latin Hypercube design (Welch,
work in progress). The choice of 21 is motivated
by the rule of thumb “10 times the number of ac-
tive variables”. Choosing 21 points rather than 20
results in convenient design points spaced at 5% of
the range.

The diagnostic plots for the Goldstein-Price
function can be seen in Figure 1. The first plot in-
dicates that the function is predicted poorly, even
if the largest function value is ignored. The sec-
ond plot has one very large standardized residual
of about 4. Thus the standard error is underes-
timating prediction uncertainty, and the expected
improvement algorithm is in danger of terminating
prematurely. It also appears that the standard-
ized residuals are larger for large predicted values.
The cross validated expected improvement plot in-
dicates that there is little discriminating power be-
tween large and and small y values.

The function values of the initial sample range
over several orders of magnitude and the cross val-
idated residuals seem to be increasing with the
magnitude of the response. This is suggestive of
a log transformation of the response. We refit the
model and obtain another set of diagnostic plots
(Figure 2). It is better; specifically, the first plot
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Figure 1: Diagnostic Plots for the Goldstein-Price
Function
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Figure 2: Diagnostic Plots for the log Goldstein-
Price Function

now shows more relationship. There is no appar-
ent trend in the second plot any more, and the
standardized residuals are roughly within [—2, 2].
With the exception of one point, low true values
have higher expected improvements than high true
values. The log transformation seems to work rea-
sonably well and is recommended for further se-
quential sampling.

The initial 21 point design (denoted by a dot)
and the following points resulting from the sequen-
tial optimization (denoted by their respective num-
bers) can be seen in Figure 3. The optimization

2 1 0 1 2
x1

Figure 3: Log Goldstein-Price Function: Initial
Design (Dots) and Points Introduced by the Se-
quential Minimization (Case Numbers)

initially focuses on a local minimum close to the
global minimum. After the local minimum is ex-
plored the algorithm finds the global minimum.
The algorithm stops after a total of 49 observa-
tions. The global minimum, on the log;, scale is
A77. The smallest function evaluation sampled is
0.478. The absolute tolerance for the stopping cri-
terion was set to .001.

Térn and Zilinskas (1987, Table 8.8) compiled
a table with the number of function evaluations
used by different global optimization algorithms
for several standard test problems. The closest
competitor is the P* algorithm by Zilinskas which
needs 153 observations. Mockus’ (1989) Bayesian
algorithm using a Wiener field needs 362 observa-
tions.

We have used the method described here with
several other functions with very good results. For



example, for the two dimensional Branin function
(T6rn and Zilinskas, 1989) diagnostics indicate that
no transformation is needed. The global minimum
is found after about 30 function evaluations. Qur
approach also works well in higher dimensions. For
example, for the six dimensional Hartman func-
tion (Toérn and Zilinskas, 1989) about 100 func-
tion evaluations suffice until the stopping condi-
tion is reached and the global minimum is identi-
fied. Space constraints do not permit to present
more examples here.

5 Discussion

In this paper we have used the Bayesian approach
to Global Optimization with the objective of re-
ducing the number of function evaluations needed
and still terminating with reliable error tolerances.
We have achieved this goal by improving the fit
of the stochastic model in two ways : (1) by re-
placing the commonly used Wiener field with the
more flexible generalized exponential correlation
function and (2) by assessing the fit and if needed
attempting to improve the fit by an appropriate
transformation.

Since the correlation function for the stochastic
process model adopted here is much more flexible
than the Wiener process correlation function, it is
no surprise that it leads to a smaller number of
function evaluations. The examples given demon-
strate that the difference can be quite substantial.

This difference comes at the cost of a greater
computational burden which makes the method
very ineffective if the target function is cheap to
evaluate. Further, the evaluation of the predic-
tor requires the inversion of a correlation matrix
of size n, where n is the sample size. Realisti-
cally, this puts an upper bound on the number of
function evaluations that can be analyzed at a few
hundred. Since the method proposed specifically
aims to reduce the number of function evaluations
needed, this is not an issue in practice for many
problems.

Mockus (1989) use the expected improvement
algorithm for a fixed number of observations and
then proceed with a local optimization technique.
The local optimizer uses the minimal sampled func-
tion value as a starting value. The rationale is that
locally the stochastic model is less effective and
a steepest descent model will reach the required
accuracy faster. A local optimization technique
could follow on the algorithm that we present. This

has the advantage that the stopping criterion is less
crucial.
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