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Abstract  

In hierarchical cluster analysis dendrogram graphs are used to visualize how clusters are 

formed. I propose an alternative graph named “clustergram” to examine how cluster 

members are assigned to clusters as the number of clusters increases. This graph is useful 

in exploratory analysis for non-hierarchical clustering algorithms like k-means and for 

hierarchical cluster algorithms when the number of observations is large enough to make 

dendrograms impractical. I present the Stata code and give two examples. 
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1. Introduction  

The Academic Press Dictionary of Science and Technology defines a dendrogram as 

follows: 

dendrogram   Biology. a branching diagram used to show relationships between members 

of a group; a family tree with the oldest common ancestor at the base, and branches for 

various divisions of lineage. 
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In cluster analysis a dendrogram ([R] cluster dendrogram and, for example, Everitt and 

Dunn, 1991,  Johnson and Wichern, 1988) is a tree graph that can be used to examine 

how clusters are formed in hierarchical cluster analysis ([R] cluster singlelinkage, [R] 

cluster completelinkage, [R] cluster averagelinkage). Figure 1 gives an example of a 

dendrogram with 75 observations. Each leaf represents an individual observation. The 

leaves are spaced evenly along the horizontal axis. The vertical axis indicates a distance 

or dissimilarity measure. The height of a node represents the distance of the two clusters 

that the node joins. The graph is used to visualize how clusters are formed. For example, 

if the maximal distance on the y axis is set to 40, then three clusters are formed because 

y=40 intersects the tree three times. 
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Figure 1 A dendrogram for 75 observations 
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Dendrograms have two limitations: (1) because each observation must be displayed as a 

leaf they can only be used for a small number of observations. Stata 7 allows up to 100 

observations. As Figure 1 shows, even with 75 observations it is difficult to distinguish 

individual leaves. (2) The vertical axis represents the level of the criterion at which any 

two clusters can be joined.  Successive joining of clusters implies a hierarchical structure, 

meaning that dendrograms are only suitable for hierarchical cluster analysis.  

 

For large numbers of observations hierarchical cluster algorithms can be too time-

consuming.  The computational complexity of the three popular linkage methods is of 

order O(n2), whereas the most popular non-hierarchical cluster algorithm, k-means ([R] 

cluster kmeans, MacQueen, 1967), is only of the order O(kn) where k is the number of 

clusters and n the number of observations (Hand et al., 2001). Therefore k-means, a non-

hierarchical method, is emerging as a popular choice in the data mining community. 

 

I propose a graph that examines how cluster members are assigned to clusters as the 

number of clusters changes. In this way it is similar to the dendrogram. Unlike the 

dendrogram this graph can be used for non-hierarchical clustering algorithms also. I call 

this graph a clustergram. 

 

The outline of the remainder of this paper is as follows: Section 2 and 3 contain syntax 

and options of the Stata command clustergram, respectively. Section 4 explains how the 

clustergram is computed by means of an example related to asbestos lawsuits. The 
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example also illustrates the use of the clustergram command. Section 5 contains a second 

example: Fisher’s famous Iris data. Section 6 concludes with some discussion. 

 

2. Syntax  

clustergram varlist [if exp] [in range] , CLuster(clustervarlist)  

[ FRaction(#) fill graph_options ] 

 

The variables specifying the cluster assignments must be supplied. I illustrate this in an 

example below. 

 

3. Options 

clustervarlist  specifies the variables containing cluster assignments, as 

previously produced by cluster.  More precisely, they usually 

successively specify assignments to 1, 2, ...  clusters. 

Typically they will be named something like cluster1 -clustermax, 

where max is the maximum number of clusters identified.  It is 

possible to specify assignments other than to 1,2, ... clusters 

(e.g. omitting the first few clusters, or in reverse order). A 

warning will be displayed in this case. This option is required.  

  

fraction()specifies a fudge factor controlling the width of line 

segments and is typically modified to reduce visual clutter.  The 

relative width of any two line segments is not affected. The 

value should be between 0 and 1. The default is 0.2.  

  



 5

fill specifies that individual graph segments are to be filled (solid). 

By default only the outline of each segment is drawn.  

 

graph_options are options of graph, twowa y other than symbol() and 

connect(). The defaults include ylabels showing three (rounded) 

levels and gap(5). 

 

4. Description and the Asbestos Example 

A huge number of lawsuits concerning asbestos-related personal injuries have been filed 

in the United States. One interesting question is: can companies be clustered into groups 

on the basis of how many lawsuits were filed against them? The data consist of the 

number of asbestos suits filed against 178 companies in the United States from 1970 

through 2000. Figure 2 shows a plot of the log base 10 of the number of asbestos suits 

over time for each of the 178 companies.  Few asbestos lawsuits were filed in the early 

years. By 1990 some companies were subject to 10,000 asbestos related lawsuits in a 

single year. I separate the number of asbestos suits by year to create 31 variables for the 

cluster algorithm. Each variable consists of the log base 10 of the number of suits that 

were filed against a company in a year. 
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Figure 2:  Plot of the log base 10 number of  asbestos suits over time for each of the 178 

companies 

 

A principal component analysis of the covariance matrix of these 31 variables shows that 

the first principal component captures 82% and the second principal component  7% of 

the variation. The first principal component consists of a weighted average of all 

variables with larger weights attributed to years with more lawsuits (approximately 1978-

2000). Clearly, it is an overall measure of the number of lawsuits. The second principal 

component consists of a contrast between variables corresponding to 1978-1992 and 

those corresponding to 1993-2000. This component captures whether the number of 

lawsuits continued to increase, stagnate or decrease during this years. Figure 3 shows a 

scatter plot of the first two principal components. The cluster at the bottom consists of 

companies with none or few lawsuits.  
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Figure 3:  Scatter plot of the first two principal components 

 

In preparation for constructing the clustergram, one needs to run the chosen cluster 

algorithm multiple times; each time specifying a different number of clusters (e.g. 1 

through 20). One can create 20 cluster variables named  “cluster1” through “cluster20” 

using the k-means clustering algorithm in Stata as follows: 

 

for num 1/20: cluster kmeans log1970-log2000, k(X) L1 name("clusterX") 

 

These variables are needed as inputs for the clustergram. The clustergram is constructed 

as follows: For each cluster within each cluster analysis, compute the mean over all 

cluster variables and over all observations in that cluster. For example, for x=2 clusters 

compute two cluster means. For each cluster, plot the cluster mean versus the number of 
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clusters. Connect cluster means of consecutive cluster analyses with parallelograms. The 

width of each parallelogram indicates how many observations from a cluster were 

assigned to a cluster in the following cluster analysis.  

Figure 4 illustrates this. Initially, all observations form a single cluster. This cluster is 

split into two clusters. Since the lower parallelogram is much thicker then the upper one, 

there are many more observations that falling into the lower cluster. These two clusters 

are then split into three clusters. A new cluster is formed in the middle that draws some 

observations that were previously classified in the lower cluster, and some that were 

previously classified in the higher cluster. Because the new cluster is formed from 

observations of more than one previous clusters (i.e. has more than one parent) this is a 

non-hierarchical split. The vertical axis refers to the log base 10 of the average number of 

lawsuits filed against a company. Therefore “higher” or “lower” clusters refer to clusters 

with companies that on average have a larger or smaller number of lawsuits. 
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Figure 4: A clustergram for 1–3 clusters.   The cluster assignments stem from the k-
means algorithm. 
 

To avoid visual clutter the width of all parallelograms or graph segments can be 

controlled through a  fudge factor. This factor by default is 0.2 and can optionally be set 

by the user. The amount should be chosen large enough that clusters of various sizes can 

be distinguished and small enough that there is not too much visual clutter. 

 

Using the syntax introduced in Section 2, the clustergram with up to 20 different clusters 

can be obtained as follows: 

 

clustergram log1970-log2000, cluster(cluster1-cluster20)  

fraction(0.1) xlab(1 2 to 20) ylab(0 0.5 to 3.5) fill  
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Figure 5:  Clustergram with up to 20 clusters. The k-means cluster algorithm was used. 
 

Figure 5 displays the resulting clustergram for up to 20 clusters. We see that the 

companies initially split into two clusters of unequal size. The cluster with the lowest 

mean remains the largest cluster by far for all cluster sizes. One can also identify 

hierarchical splits. A split is a hierarchical split when a cluster has only one parent or 

predecessor. The split from 3 to 4 clusters is almost hierarchical  (it is not strictly 

hierarchical because a single company joins from the bottom cluster). Also, there are a 

number of individual companies that appear to be hard to classify because they switch 

clusters.  
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At 8 and 19 clusters the two clusters at the top merge and then de-merge again.  This 

highlights a weakness of the k-means algorithm. For some starting values the algorithm 

may not find the best solution. The clustergram in this case is able to identify the 

instability for this data set.  

 

Figure 6 shows a clustergram for a hierarchical, average linkage cluster analysis. These 

were obtained using the following Stata commands: 

  

 cluster averagelinkage log1970-log2000, L1 name("clusX") 

 for num 1/20: cluster gen clusterX =group(X)  
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Figure 6: A clustergram for the “average linkage” (hierarchical) cluster analysis.  
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Because of the hierarchical nature of the algorithm, once a cluster is split off it cannot 

later join with other clusters later on. Qualitatively, Figure 5 and Figure 6 convey the 

same picture.  Again, the bottom cluster has by far the most members, and the other two 

or three major streams of clusters appear at roughly the same time with a very similar 

mean. 

 

In Figure 7 we see a clustergram for a hierarchical, single linkage cluster analysis. Most 

clusters are formed by splitting a single company off the largest cluster. When the 11th 

cluster is formed the largest cluster shifts visibly downward. Unlike most of the previous 

new clusters the 11th cluster has more than one member and its cluster mean of about 2.5 

is relatively large. The re-assignment of these companies to the 11th cluster causes the 

mean of the largest cluster to drop visibly.  If our goal is to identify several non-trivial 

clusters, this cluster algorithm does not suit this purpose.  Figure 7 conveys this 

information instantly.  
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Figure 7: A clustergram for the “single linkage” (hierarchical) cluster analysis.  
 

Of course, the ultimate decision of the number of clusters is always somewhat arbitrary 

and should be based on subject matter expertise, the criterion that measures within-cluster 

homogeneity as well as insight gained from the clustergrams. It is re-assuring that  

k-means and the algorithm “average linkage” lead to qualitatively similar results. 

 

5. Iris Data  
Fisher’s Iris data (Fisher, 1938) consists of four variables: length and width of sepal and 

petal of  Iris. It is known that there are three different species of Iris, namely Iris setosa, 

Iris versicolor, and Iris virginica. It is of interest whether one can distinguish these 

species based on these four variables. Figure 8 shows a scatter plot of petal length and 

width. This scatter plot best shows how the three species are separated.  One species is 
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relatively easy to distinguish from the other two; distinguishing between the other two is 

harder. Because the data consist of 150 observations a full dendrogram cannot be drawn. 
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Figure 8: Scatter plot of petal width and petal length of the Iris data. Different plotting 
symbols indicate different species: (1) Iris setosa, (2) Iris versicolor, (3) Iris virginica 
 

Figure 9 shows clustergrams for the k-means algorithm and the three linkage algorithms 

for cluster analyses on the standardized data set. The initial split for the k-means, average 

and single linkage algorithms look identical and this turns out to be true. At the initial 

split, species 1 (numbers as labeled in Figure 8) is separated from species 2 and 3, which 

form a joint cluster. As we have seen in Figure 8 species 1 has lower x-values and 

therefore the species 1 cluster corresponds to the lower branch in Figure 9. 
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As we have seen in Figure 7, the single linkage cluster algorithm has a tendency to split 

off single observations. The fact that here the single linkage algorithm forms two clusters 

of substantial size suggests that the clusters are well separated. This is true as we have 

seen in Figure 8. Because of its distance criterion (the maximum distance between any 

two members of two clusters) the complete linkage cluster algorithm tends to avoid 

elongated clusters in favor of more compact clusters. Here, the complete cluster 

algorithm splits the elongated data cloud roughly in half. 
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Figure 9: Clustergram for 4 cluster analyses on the Iris Data: k-means (upper left), 
complete linkage (upper right), average linkage (lower left), single linkage (lower right) 
 

When three clusters are formed the k-means algorithm breaks the cluster consisting of 

species 2 and 3 into separate clusters. By contrast, Figure 9 shows the average and single 

linkage cluster algorithm split off a small number of observations. The complete linkage 
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algorithm splits the lower cluster attempting to separate species 1 from other 

observations. 

 

Table 1 displays the confusion matrix (the matrix of misclassifications) for each of the 

four algorithms based on three clusters. k-means has the best classification rate 

classifying 83% of the observations correctly. However, the success of the k-means 

algorithm depends on one of the initial cluster seeds falling into the cloud of species 1 

observations. Surprisingly, the complete linkage algorithm has the second best 

classification rate. Given its poor first split the second split was nearly perfect. The single 

linkage algorithm is confused by the proximity of species 2 and 3.  The algorithm 

incorrectly chooses to split a single observation off the pure cluster consisting of species 

1. 

 

 Cluster 1  Cluster 2 Cluster 3 
k-means  83% correctly classified 
Species 1 50 0 0 
Species 2 0 39 11 
Species 3 0 14 36 
Complete Linkage 79% correctly classified 
Species 1 49 1 0 
Species 2 0 21 29 
Species 3 0 2 48 
Average Linkage 69% correctly classified 
Species 1 50 0 0 
Species 2 0 50 0 
Species 3 0 47 3 
Single Linkage 66% correctly classified 
Species 1 49 0 1 
Species 2 0 50 0 
Species 3 0 50 0 
 

Table 1: Confusion matrix for several cluster algorithms on Fisher’s Iris data 
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6. Discussion 

The clustergram is able to highlight quickly a number of things that may be helpful in 

deciding which cluster algorithm to use and / or how many clusters may be appropriate: 

approximate size of clusters, including singleton clusters (clusters with only one 

member); hierarchical versus non-hierarchical cluster splits; hard to classify observations; 

and the stability of the cluster means as the number of clusters increase. 

 

For cluster analysis it is generally recommended that the cluster variables be on the same 

scale. Because means are computed this is also true for the clustergram. In the asbestos 

claims example all variables measured the same quantity: number of lawsuits in a given 

year. For most other applications – including Fisher’s Iris data - it is best to standardize 

the variables. 

 

The dendrogram is a hierarchical, binary1 tree where each branch represents a cluster. 

Ultimately, at the leaves of the tree each observation becomes its own cluster. The 

clustergram is a non-hierarchical tree. The number of branches varies, and can be as large 

as the number of clusters. For example, observations in one of the clusters at x=10 can 

branch out into any of the 11 clusters at x=11. We have only looked at up to 20 clusters. 

If one were to continue to increase the number of clusters up to the point where the 

number of clusters equals the number of observations, then at the leaves each cluster 

consists of only one observation.  

 

                                                
1 In the rare case of “ties” a node can have more than 2 children. 
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The clustergram differs from the dendrogram as follows: (1) The layout on the 

dendrogram’s horizontal axis is naturally determined by the tree (except for some 

freedom in whether to label a branch left or right). The layout of the non-hierarchical tree 

is not obvious. We chose to use the mean to determine the coordinate. Other functions are 

possible. (1) In the dendrogram “distance” is used as the second axis. “Distance”  

naturally determines the number of clusters. In the clustergram we use the number of 

clusters instead.  (3) In a clustergram the (non-hierarchical) tree is not usually extended 

until each leaf contains only one observation.  (4) In the clustergram the width of the 

parallelogram indicates cluster size. This is not necessary for the dendrogram. Since all 

leaves are plotted uniformly across the horizontal axis the width of the cluster already 

gives a visual cue as to its size. 

 

The clustergram can be used for hierarchical clusters. If the data set is small enough to 

display a full dendrogram a dendrogram is preferable because  “distance” conveys more 

information than “number of clusters”. 
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